Early MRI Blood Volume Changes in Constrictor Muscles Correlate With Postradiation Dysphagia.

Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan. Electronic address: mmierzwa@med.umich.edu. Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan. The Permanente Medical Group, Rohnert Park, California. Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan. Department of Speech and Language Pathology, Veterans Affairs Hospital, Ann Arbor, Michigan. Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.

International journal of radiation oncology, biology, physics. 2021;(2):566-573
Full text from:

Abstract

PURPOSE Predicting individual patient sensitivity to radiation therapy (RT) for tumor control or normal tissue toxicity is necessary to individualize treatment planning. In head and neck cancer, radiation doses are limited by many nearby critical structures, including structures involved in swallowing. Previous efforts showed that imaging parameters correlate with RT dose; here, we investigate the role of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) blood volume (BV) changes in predicting dysphagia. METHODS AND MATERIALS This study included 32 patients with locally advanced oropharyngeal squamous cell carcinoma treated with definitive chemoradiation on an institutional protocol incorporating baseline and early midtreatment DCE-MRI. BV maps of the pharyngeal constrictor muscles (PCM) were created, and BV increases midtreatment were correlated with the following parameters at 3 and 12 months post-RT: RT dose, Dynamic Imaging Grade of Swallowing Toxicity swallow score, aspiration frequency, European Organisation for Research and Treatment of Cancer HN35 patient-reported outcomes, physician-reported dysphagia, and feeding tube (FT) dependence. RESULTS The mean BV to the PCMs increased from baseline to fraction 10, which was significant for the superior PCM (P = .006) and middle PCM (P < .001), with a trend in the inferior PCM where lower mean doses were seen (P = .077). The factors associated with FT dependence at 3 months included BV increases in the total PCM (correlation, 0.48; P = .006) and middle PCM (correlation, 0.50; P = .004). A post-RT increase in aspiration was associated with a BV increase in the superior PCM (correlation, 0.44; P = .013),and the increase in the total PCMs was marginally significant (correlation, 0.34; P = .06). The best-performing models of FT dependence (area under the receiver operating curve [AUC] = 0.84) and aspiration increases (AUC = 0.78) included BV increases as well as a mean RT dose to middle PCM. CONCLUSIONS Our results suggest that midtreatment BV increases derived from DCE-MRI are an early predictor of dysphagia. Further investigation of these promising imaging markers to assess individual patient sensitivity to treatment and the patient's subsequent risk of toxicities is warranted to improve personalization of RT planning.

Methodological quality

Publication Type : Randomized Controlled Trial

Metadata

MeSH terms : Blood Volume